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Contrasting rule and machine learning
based digital self triage systems in
the USA
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Patient smart access and self-triage systems have been in development for decades. As of now, no
LLM for processing self-reported patient data has been published by health systems. Many expert
systems and computational models have been released to millions. This review is the first to
summarize progress in the field including an analysis of the exact self-triage solutions available on the
websites of 647 health systems in the USA.

Today, patients benefit from digital self-triage, automated intake, differ-
ential diagnostic, and disease characterization systems1–12. Prior to these
automated systems, patients have had to navigate healthcare decision-
making supported by the limits of their own knowledge, internet search
browsers, and of people they contact, particularly medical professionals.
Nurse call centers have been around for decades (Fig. 1). These services
enabled patients to call a number, report their symptoms/conditions, and
receive information to support their healthcare decisions (i.e., Patient
Decision Support (PDS)). The most widely adopted telephone triage pro-
tocols are the Schmitt–Thompson telephone triage protocols (STPs) today
powering 95% of nurse call centers across the country and used in >200
million encounters13–15. The STPs are a set of triage rules that help determine
whether care is needed and if so, specificallywhich type of care.They resolve
between emergency medical services (911), emergency rooms, urgent care
centers, and PCPs. How many of us have been uncertain of which care to
seek or whether to seek it at all when sick? The purpose of these STPs is to
standardize and improve the accuracy of guidance medical professionals
give over the phone in a textbook published by the American Academy of
Pediatrics that continues to be maintained14,15. As nurse lines grew to be
ubiquitously offered by every health insurer and health system, PDS grew to
be robust16,17. As technological capabilities improved, automating these rules
became an option and a simpler means for patients to self-support18,19.

These “virtual triage” systems, initially helping with intake and triage,
were among the firstmechanisms for patients to self-report their symptoms
and receive PDS. However, automation came at a tradeoff. Increased speed,
anonymity, and convenience came at the cost of a decreased ability to clarify
and interpret responses via a medical professional on the phone4,9,10,19,20. On
the other hand, the healthcare system could also save money by better
optimizing use of their call centers10.

As data availability and technological capability improved, so too did
computational statistical methods. Computers were programmed to do
tasks typically reserved for human intelligence (Artificial Intelligence—

AI)21. Eventually, methods were created that allowed computers to learn
from large amounts of data and generalize such learnings to complete tasks
(Machine Learning—ML)22. Combine these with the ability for computers
to process natural language input by users (Natural Language Processing—
NLP) and the building blocks for more powerful differential diagnostic
enginesanddisease characterization abilitieswere set in place23,24. Eventually
the transformer and large language models (LLMs) were developed leading
to another inflection point25–27. Processing and generating natural language
reached new heights with “generative A.I.” and automation no longer
necessitated a tradeoff in ability to clarify or interpret patient-inputted
language28. However, there are still gaps related to hallucination, inter-
pretability, validation, and accuracy21,29.

Automated intake, virtual triage, and differential diagnostic prediction
blossomed in industry and the start-upworld30–34 enabledby the fact that the
FDAhas gone throughmultiple draft guideline revision periods but still has
no enforced guidance on PDS systems35,36. This perspectives piece will dive
deep into the nuance of self-reported virtual triage and differential diag-
nostic systems. Itwill discuss various approaches tobuilding, validating, and
improving on both. It will detail the advantages and disadvantages of rule-
versus ML-based systems (Table 1). Finally, it will discuss the regulatory
landscape and future directions.

Triage
Definition
The medical term for triage comes from the French verb, trier, meaning to
sort or separate37,38. Accordingly, triage is a process of assigning priority to a
patients’ treatments based on the severity of their condition. This process
helps allocate limitedmedical resources and is used in a variety of settings37.
After its development and use in wartime settings, triage was then gen-
eralized for emergency settings in civilian life39. Triage is commonly used in
emergency departments to determine the order in which patients are seen40.
More generally, primary care providers (PCPs) must triage which patients
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can be managed by them versus which patients must be managed by spe-
cialists.While individual hospitals or systemsmaydevelop their ownrules to
support PCPs decision-making, there is no standardized set of clinical
guidelines that determine exactly which patients should be referred to
specialists41. Today, patientsmust decide to access care among a growing list
of emergency services, emergency rooms, urgent care centers, walk in/retail
clinics, telemedicine providers, primary care offices, specialist offices, and
more. As a result, 20–40% of healthcare spend is wasted each year in
unnecessary healthcare utilization42. To minimize the usage of resources
there is a need to enable patients to better self-triage. Patient-facing digital
technology has made it possible for PDS to be provided in patient-friendly

formats. There are generally two classes of virtual triage systems: (1) rule-
based systems and (2) machine learning-based systems. Each of these two
classes offers certain advantages and disadvantages that will be overviewed
in the following sub-sections.

Rule-based self-triage systems
Rule-basedvirtual triage systems employa set of empirical rules, designedby
medical professionals, to guide patients with a specific set of signs, symp-
toms, and conditions to the most appropriate site of care within the most
appropriate timeframe. Individual hospitals or health systems may devise
their own rules to help PCPs determinewhich patients should be referred to

Fig. 1 | Timeline for developing artificially intelligent systems that use patient self-reporteddata.This timeline starts with the nurse call centers and shows how eventually
their underlying content and decision rules were automated. Today there are a few distinct categories of patient self-service technologies powered by artificial intelligence.

Table 1 | Advantages and disadvantages of expert systems and statistical learning methods for self-triage by health systems

Expert based systems Statistical machine learning

Advantages Disadvantages Advantages Disadvantages

Important
considerations
of self-triage
solutions for
health systems

Validation STPs have been tested in
>200 million nurseline
encounters over 20+
years12,83.

Requires a panel of physicians to
iterate in determining the exact
rules. There is no gold standard
for self-triage. The next closest
thing is telephone triage84.

Statistical triage systems use
large datasets to train models
(often a neural network) to
calculate a triage level. The origin
of these datasets is unknown in
the literature85,86.

Statistical triage systems have
been around for ~10 years in
contrast to 20+ years for expert
triage systems. Naturally, they
are less validated63,83.

Follows
clinical best
practice
guidelines

The field of Emergency
Medicine is centered
around triage. Able to
encode experiential
knowledge gained in the
field18,87.

There may be triage patterns that
have not yet been uncovered by
humans for encoding88.

Potential to identify triage
patterns that optimize for minimal
resource utilization and maximal
likelihood of symptom
resolution18,89–92.

Triage does not have a "gold-
standard". So there is no "right
answer" with which to label
training data93.

Improvement
over time

Systems may have their
own rules for triage that vary
based on available
resources in facilities.
Expert systems allow for
this configurability94.

Improvement over time requires
random sampling of real triage
encounters and human
reinforcement. Also requires
paying attention to triage
distributions at a population level
and adjusting as needed95.

If provided with feedback on the
correctness of an individual
patient’s triage, machine
learning-based systems may
enable more automated
improvement over time96,97.

There is no standard set of
"triage-specific" data in the
EMR. Just because an individual
patient went to X location, does
not mean it was the "right"
location for their care. The EMR
does not contain direct
information on whether or not
that site of care was "right" or if
another one would have been
more appropriate98–109.

Explainability Any prediction may be
examined for the exact rules
that led to it and adjusted as
needed110.

If an issue with triage is found, it
is difficult to understand exactly
why that recommendation was
provided and to adjust that
specific pathway111.

Length Asks less questions overall
(avg: 17.5)63.

Asks more questions
(avg: 29.2)63.
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which specialists41,43. However, the first nationally adopted set of triage
rules were for telephone triage44. Most health systems in the USA trust the
rule-based protocols developed by Drs. Barton Schmitt and David
Thompson for telephone triage of patients (STPs)45. Rules-based systems
serve to encode medical knowledge and experience accumulated over the
lifespan of clinical medicine and allow for complete configurability and
explainability of any triage. The STPs have been used in >200million nurse
call center encounters45. The disadvantages of rules-based systems are that

they are laborious to create, require a reconciliation process between mul-
tiple physicians complicated by the fact there exists no triage gold standard
and there is inherent variation among how different medical professionals
might triage patients, and that triage accuracy would be limited to the
accuracy of the humans developing the rules46. Some solutions have con-
ducted this reconciliation process to better standardize the exact rules that
would indicate which patients should see a specialist versus a PCP (Table 2).
These solutions use decision trees or knowledge graphs to power self-triage

Table 2 | A description of each self-triage vendor currently in use today by health systems across the USA

Name First self-
triageorDDx?

Type Description Source

Clearstep Triage Hybrid Expert system built off Schmitt triage content (co-author of the Schmitt–Thompson telephone triage
protocols)+Hybrid supervised and large language computational statistical model for natural language
processing and output of free text conversationally and for summarization of the experience.

Industry
knowledge

Fabric
(fka Gyant)

Triage Statistical Uses NLP to extract SNOMED, ICD 10, and its own concepts out of EHR data. All this information is
structured and labeled byGyant clinicians. This includes adjusting for prevalence differences. A random
forest model is then trained using the labeled, structured data.

112

Self-care
decisions

Triage Expert system List-based checklist of decision rules that the patient goes down sequentially and rules out one at a time.
The first rule unable to be removed from the list is chosen for its triage disposition. Based on Schmitt
clinical content (co-author of the Schmitt–Thompson triage protocols).

113

MSFT
health bot

Triage Depends on
triage source

Set up to be powered by any virtual triage vendor. Currently uses infermedica in its backend. 114

Ada DDx Hybrid Medical Knowledge Base: Ada hosts a medical knowledge base, which is used to define a Bayesian
network. The knowledge base was built and reviewed by medical doctors in a curated process of
knowledge integration frommedical literatureand iscontinuouslyexpanded.Theknowledgebaseconsists
ofdiseasemodelsofcommonconditionsandseveral hundred rarediseases, including their corresponding
symptomsandclinicalfindings,whichareadded to / updated in theknowledgebaseaccording toevidence
from peer-reviewed literature. Components of the knowledge base can have additional metadata
associated with them and used for further refinement (e.g., intensity, temporality). Epidemiologic data is
used to define probabilities of disease at baseline prior to any responses provided by the user.
Question Selection: Each question asked by Ada is dynamically and probabilistically determined by the
reasoning engine. Each subsequent question is determined based on all previously supplied basic health
information and symptoms. The engine is designed to balance the number of questions asked with
differential diagnostic rigor.
Reasoning Engine: Ada’s reasoning engine estimates disease probability using the medical knowledge
base via a Bayesian network that carries out approximate inference on the base. “Information-theoretical
methods” are used to decide which questions are asked to the user.
Validation + QA/CE: Ada’s medical intelligence (i.e., reasoning engine+medical knowledge base) is
continually validated against a set of several thousand internal test cases. These test cases are made of
commonand rarediseases fromacrossmedical specialties and includescasesbasedonmedical literature
as well as “bread-and-butter” case scenarios of varying levels of diagnostic certainty. A team of medical
doctorsemployedbyAdaconstantly reviewthesystem’smedical knowledge.Asecondprocess involvesa
verification tool to test each update to the medical intelligence with hundreds of cases written by doctors
external to Ada. Ada medical doctors are blinded to the second set of test cases, which is also regularly
updated.

115

Bright.MD Triage Expert system The three health system implementations using BrightMD’s technology offer no questions to calculate a
triage. The experience includes a keyword search, proceeded by a list of symptoms indicating that
emergent care is needed for the chosen chief complaint, afterwhich the patient is shownoptions for care
if they click “next” (i.e., endorsing they do not have any of the emergent symptoms)

116

Healthwise Triage Expert system Expert system that goes through a series of pre-determined questions that has the ability to branch
based on prior responses and is built off Healthwise clinical content.

117

Orbita Triage Hybrid Uses Isabel for self-triage but then transforms Isabel’s content into conversational A.I. via Orbita’s
technology.

118

Isabel self-
triage

Triage Expert system The Isabel Self-Triage asks 7 standard questions for any chief complaint and calculates pre-
programmed triage dispositions among 4 different levels of acuity.

119

Buoy DDx Statistical “Anundisclosedalgorithm, supposedly relyingonnatural languageprocessing (NLP)–extracteddata from
18,000 clinical papers. As stated by its chief executive officer and founder, Buoy Health specifically does
not use decision trees but “dynamically picks” 1 of 30,000 questions based on the principle of greatest
reduction of diagnostic uncertainty, which does not necessarily imply the use of neural networks”.

120

Infermedica/
Symptomate

DDx Statistical 1. Collecting initial evidence. The patient interview starts with gathering initial symptoms, risk factors,
and demographic data. Additional input regarding the symptoms’ occurrence or severity makes the
engine even more precise.
2. Intelligent interview. The inference engine uses initial evidence to construct a dynamic interviewbased
on probabilistic models and reasoning techniques. The algorithms follow the rules of differential
diagnosis that physicians use to interview the patient. The engine evaluates various conditions at once.
3.Triage recommendationsbasedoffadifferential.Finally, the inferenceenginepresents themostprobable
causes of the symptoms, which are paired with the suggested level of care. Triage recommendations are
based on a 5-level scale (self-care, consultation, consultation 24 h, emergency, ambulance).

121

Inclusion criteria for this table is the same as for Table 2 and the order of solutions described follows that of Table 2 as well.
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experiences that are encoded with clinical best practice guidelines as they’ve
been developed and validated to date (e.g., STPs).

Machine learning (ML)-based self-triage systems
In contrast to the rule-based systems that use empirical decision rules, an
ML-based approach to virtual triage depends on training amodel on a large
set of patient data to predict the most appropriate site of care for that
individual to go to. With many of the statistical approaches it is often
difficult to provide the exact patient responses that led to their triage result
(e.g., neural networks, deep learning, transformer-based)47. This impacts the
explainability and interpretability of statistical machine-learning (ML)
approaches.Certain statistical approachesmayallow for someexplainability
(e.g., non-neural network approaches like regressionmodels and tree-based
feature importance)48,49. These are typical limitations of ML-based
approaches at large.

One of the challenges in labeling datasets for supervised learning is that
it may be difficult to establish a “right-answer” for triage. This is because
different healthcare providers (HCPs) would triage certain patients
differently46. As a result, the available training data is subject to variability.
Additionally, there is no consensus on the basis by which to conclude that a
patient was “successfully” triaged. Numerous sites of healthcare delivery
could resolve a patient’s issue (Box 1). Theoretically, perfectly accurate self-
triage would always point the patient to the optimal site of care at the least
cost. Conversely, inaccurate self-triage would lead to more unnecessary
touchpoints and greater cost. The current best practice in this field of triage
are the rules trusted in nurse call centers for the past few decades (STPs).
Success metrics could include the number of visits required to resolve/
manage a patient’s medical concern or the cost of care delivered to the
patients (Box 1). These two metrics could be combined into a ratio. We
suggest this ratio with the idea that “successful” healthcare would ideally

resolve apatient’smedical concernusing theminimumhealthcare resources
to do so. Using some definedmeasure of success, machine learning models
could be trained to recommend certain levels and timing of care. As an
example, we could create amodel that minimizes referrals to other care and
utilization of healthcare resources.

Despite the disadvantages of ML-based approaches to virtual triage,
there are several advantages. It can be both less time intensive and costly to
maintain a machine learning model once the training, testing, validation,
and operational pipelines have been established.However, choice of labels is
important. Data labeledmanually by humanswill results inmodels that can
only achieve parity with human decision-making. Training models to
achieve certain outcomes (maximizing the ratio of problem resolution to
cost)may reveal patterns that humanswould not have recognized. A hybrid
approach is hypothesized to blend human experience with added nuance.
Additionally, anAI-approachwould theoretically be able to capturepatterns
that humans cannot/have not yet. Moreover, as more training data is pro-
vided to the model, it can continuously get better over time. This process of
continuous improvement can also be automated.

The use of large language models for self-triage
November 2022 marked an inflection point in what was possible with A.I
with the release of ChatGPT and a subsequent wave of LLM proliferation
ensuing across industries. LLMs’ ability to process and convert inputs into
engaging, human-like outputs marked an inflection point in what was
possible with automated conversational experiences with patients having
reported the desire to use LLMs for healthcare-related inquiries50.

Thus far, LLMs have been evaluated for their rapport with patients,
their triage and DDx accuracy in general, and their utility for patient self-
education and self-diagnosis in a collection of specific use cases (e.g.,
COVID51, ophthalmology52, obstructive sleep-apnea53, sialendoscopy54).

Box.1 | Thisscenarioshowsasamplingofpathwaysthatonepatientmaytaketoreceivingthe
same overall care as a function of different “first touchpoints”. All clinical pathways are
displayed after expert consultationwith PCPs and specialists

Illustrating the impact of the first touchpoint on the overall care
journey for a single patient

Anonymized patient scenario*: 30 y/o in Chicagowith knee instability
that started after playing basketball aggressively. It was not preceded by
any inciting event or contact. The patient didn’t feel a “pop”. There is no
pain, swelling, or redness. The knee doesn’t give out. The instability
almost disappears with rest but gets worse after exercise.

Clinical guideline: In states like Illinoiswhere physical therapy (PT) can
refer to imaging: referral to PT and referral to radiology for an X-ray. If no

improvement after PT, they can refer for an MRI with potential referral to
Orthopedics after depending on the findings.

First touchpoint options: In-person PCP, virtual PCP, specialist visit
(PT and/or orthopedics), urgent care, asynchronous care. For this illus-
tration, we assume this patient did not get better with PT and thereby
required MRI imaging, which revealed the need for an orthopedic
consultation.

Sample patient pathways leading to same overall care administration

First touchpoint Second touchpoint Third touchpoint Fourth touchpoint Overall number of steps Bill Amount (pre-insurance)**

In-person PCP PT Radiology Orthopedics 4 ~1400

Virtual PCP PT Radiology Orthopedics 4 ~1300

PT Radiology Orthopedics 3 ~1250

Orthopedics PT Radiology Orthopedics 4 ~1500

Urgent care PT Orthopedics 3 ~1350

Traditional Care Pathway (without using self-triage): Start with PCP or Orthopedics (4 steps + $$$)
Self-triage (minimize # of touchpoints + cost): Start with PT (3 steps + $$)
*Note: this is a real patient scenario included anonymously and with consent
**Bill amount estimated using the following references122–124
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However, the commercial use of LLMs inhealthcarehas been largely limited
to clinical documentation and other administrative functions on the
provider-facing side. The patient-facing side has yet to demonstrate the
same level of adoption.

Much of the slowness in adoption on the patient-facing side has been
due to a list of concerns with LLMs. Including, but not limited to, halluci-
nation rates, consistency of response, interpretability, regulation, and
copyright55. ChatGPT was found to be 63% accurate on average in 10
different reasoning categories56. In healthcare, the risk of an incorrect
recommendation comes at a cost to the patient’s health. Thus, it is
imperative that patients and healthcare professionals have the capability to
interpret the exact reasons for a model’s prediction/recommendation. In
general, this is a drawback of ML approaches to patient-self reported triage
or diagnosis57.

Considerable work is being done to evaluate the full scope of LLMs’
viability in healthcare. Levine et al. compared the triage and diagnostic
accuracy of GPT-3 to a standardized set of vignettes used historically for
evaluating the accuracy of self-triage systems.GPT-3performeddiagnosis at
levels close to, but below that of physicians and better than that of lay
individuals. Themodel performed less well on triage, where its performance
was closer to that of lay individuals and below that of clinicians58. Hirosawa
et al. evaluated the diagnostic accuracy of differential diagnoses generated by
GPT-3 on a collection of commonly reported chief-complaints and found
GPT-3 to be 40% less accurate on average compared to the judgment of
physicians59. Chiesa-Estomba et al. evaluated the potential of GPT-3 as a
supportive tool for sialendoscopy clinical decision making and patient
information support. GPT-3 was found to have strong concordance with
ENT specialists54. When responses to patient questions from GPT-3 were
compared to those from physicians, patients reported that responses from
the LLM were 10× more empathetic than those from physicians60. More-
over, surveyed patients indicated the desire to use LLMs for healthcare-
related inquiries50. All in all, LLMs have significant progress to make in
achieving comparable accuracy to physicians in self-triage and self-
diagnosis use cases, have demonstrated clear demand from patients, and
haveoutperformedphysicians in the empathyof their responses. Regulation
aside, there is clear potential for using LLMs in the spaces of self-triage and
self-diagnosis.

FDA regulatory landscape
Currently, decision support systems that make use of patient self-reported
data are not regulated by the FDA. However, the FDA has released several
iterations of draft guidelines which have been open for public
commenting36. Through these iterations there have been several develop-
ments. Initially, the draft guidelines separated PDS and clinical decision
support systems (CDS) as two different categories61. However, these two
categories have now beenmerged into one broader category of CDS36. CDS
are those that fit the following four criteria: The system is “(1) not intended
to acquire, process, or analyze a medical image or a signal from an in vitro
diagnostic device or a pattern or signal from a signal acquisition system (2)
intended for the purpose of displaying, analyzing, or printing medical
information about a patient or othermedical information (3) is intended for
the purpose of supporting or providing recommendations to a HCP about
prevention, diagnosis, or treatment of a disease or condition and (4) is
intended for the purpose of enabling an HCP to independently review the
basis for the recommendations that such software presents so that it is not
the intent that the HCP rely primarily on any of such recommendations to
make a clinical diagnosis or treatment decision regarding an individual
patient36.

Systems that fit these four criteria are exempt from regulation by the
FDA. Note that the last of these criteria has important implications on
the architecture of successful triage and DDx systems. To enable patients to
see the basis bywhich information is recommended to them ismore difficult
for systems that operate off an ML approach as compared to ones that are
rules-based. If the specific ML approach is unable to fit this fourth criteria,
then it would not be exempt from FDA regulation and would be subject to

further scrutiny. This would require greater resources to successfully bring
ML-based systems for generalized use with patients. Should the draft FDA
clinical decision support guidelines become law, rules-based or hybrid
systemsmay have an advantage from a regulatory perspective. A limitation
of this review is its focus on the U.S. healthcare system. It does not include a
regulatory overview of other regions around the world which may be the
subject of future work.

Challenges and future directions
The generalizability of AI to clinical practice remains in question62. Many
different ML models have been reported in the literature for their ability
to outperform humans in medical settings, however, few have been
generalized for broad, clinical use62. Often, these models do not perform
as strongly when generalized to the population at large. We hypothesize
that themost successful approaches will employ a hybridmethodology of
empirical knowledge and statistical methods. Simply stated, using the
centuries of humanmedical experience to encode rules that are generally
agreed upon by most medical experts would likely enable systems to
achieve comparable levels of accuracy to human clinicians. Then building
statistical layers on top of these empirical rules would enable systems to
advance accuracy beyond that of human ability and simultaneously
enabling more conversational experiences.

There is limited published data on the performance of self-triage sys-
tems. The seminal paper comparing the accuracy of various knowledge-
based and statistical triage and diagnostic systems found, that among
23 symptom checkers, the correct diagnosis was provided first in 34% (CI:
3%) of a set of standardized patient vignettes, in the top 20 diagnoses in 58%
(CI: 3%) of vignettes, and the appropriate triage in 57% (CI: 5%) of
vignettes63. A subsequent study comparing 37 systems reported similar
results64. Triage performance decreased with decreasing urgency of
condition63. The accuracy of triage systems for emergent scenarioswas 2–3×
higher than in self-care scenarios63. Moreover, accuracy ranged widely as
performanceon appropriate triage advice from24 symptomcheckers varied
from 33 to 90%63–65.

This wide variation in accuracy of self-triage systems reveals one of its
limitations. It is possible that inaccurate self-triage increases the total
touchpoints and cost. To illustrate this point, one can conduct a thought
experiment with the following groups: (a) users of a “dummy” self-triage
system that randomly assigns a triage to each patient and (b) users of a
“perfect” self-triage system that is able to perfectly optimize all factors of
clinical accuracy, insurance, patient preferences, provider preferences, and
network preferences.One hypothesis is that users of (a) are bounced around
the system more often. Potentially until they get lucky to be with the right
provider for their need. In contrast users of (b) would always be presented
with the exact provider for their immediate clinical need, thereby mini-
mizing the number of touchpoints, cost, and time expended to receive that
optimal care. The effect of self-triage systems on average # of patient
touchpoints at the health system, average cost of overall care, or on clinical
outcomes is yet to be reported on. Regardless, any study that examines these
outcomes of self-triage will also have to account for variation in accuracy
based on the individual triage system used.

One gold standard of triage accuracy is the judgment of human clin-
icians. There are studies assessing concordance of self-triage and diagnostic
systems with medical professionals. Several systems with rules- and ML-
based layers have been found to perform at least as well as doctors46,66. As
more statistical methods are tested, self-triage and diagnostic systems
continue to improve. One group hypothesized that physicians spend more
time ruling out than in. Thus, a counterfactual systemwas found to bemore
accurate than an inferential one67. Moreover, as greater connectivity
between these systems and the electronicmedical record (EMR) are created,
feedbackwill increase. Self-triage systems can begin to optimize forminimal
referrals and cost while maximizing for resolution and satisfaction. Hybrid
rules- and ML-based systems are emerging46. Eventually, integration with
wearable and sensor technology will facilitate the incorporation of objective
information about a person’s health status further improving accuracy.
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Understanding the tradeoffs between various rules- andML-basedmethods
will be critical to designing successful self-guided PDS systems. Moreover,
navigating the emerging regulatory landscape will also determine success.
User experience (UX) research and design to optimize themanner in which
patient users interactwith the self-triage systemswill be critical. Considering
self-triage systems require significant amounts of information (tens of
questions) to be answered by the patient users, there is a high percentage of
drop-off. Optimizing the UX for ease and maximal completion represents
an emerging body of literature.

One of the most common modalities for administering self-triage
systems is via a chatbot6,9,63,68. Research into the design and optimization of
healthcare chatbots has identified several key insights to enhance user
engagement and minimize drop-off rates. In healthcare settings, the per-
ception of empathy and understanding from a chatbot can make users feel
more comfortable69. Furthermore, research highlights the importance of
fairness in chatbot responses. One study indicates that users are sensitive to
perceived biases or unfairness in chatbot interactions70. Ensuring trans-
parency and fairness in chatbot behavior directly correlates with higher
satisfaction and trust, underscoring the need for ethical design principles in
UX development for healthcare systems71. In addition, the visual pre-
sentation and conversational style of chatbots can also influence how users
perceive and engage with the system, though these factors may not always
directly improve user experience without thoughtful integration69.

To reduce the drop-off rates in self-triage systems, best practices from
chatbot research suggest focusing on creating seamless, intuitive interac-
tions that reduce cognitive load while still collecting essential information72.
This includes optimizing the length and complexity of questions and
designing conversational agents that can adapt to user responses dynami-
cally, keeping the interaction engaging and efficient70. The potential for
more effective and human-centered designs lies in balancing these tech-
nological and psychological factors to create an experience that feels per-
sonalized and responsive.

To ensure the experience also feels safe, a number of ethical andprivacy
issues must be considered. First, protecting patient privacy is paramount.
These systems collect and analyze sensitive health data, and thus must
comply with strict data security standards. These include the prevention of
storing identifiable health information, automated data wipes, auditing of
organizational processes and data, and the certification of upholding strict
security standards (e.g., HIPAA, SOCII, or HITRUST). Additionally, users

should have control over how their information is gathered and used,
ensuring informed consent and autonomy in healthcare decisions73. Equally
important is the need to ensure that self-triage systems operate equitably.
These tools must be designed to account for systemic inequalities, such as
those faced by individuals with disabilities or those from disadvantaged
socioeconomic backgrounds. Incorporating equity adjustments, like reser-
ving care for marginalized groups, helps to mitigate biases in algorithmic
decision-making74,75.

Transparency is another critical ethical consideration. Providing
patient users and HCPs the ability to understand the logic behind decisions
made by self-triage algorithms builds trust and ensures proper use76. Doing
so also aligns with the draft guidance from the FDA36. Without clear and
accessible information about how these systems function, there is a risk of
mistrust or misuse, potentially leading to harmful outcomes for patients77.
Finally, while self-triage systems can improve efficiency, healthcare pro-
fessionals must be able to intervene when necessary to correct algorithmic
errors or biases, ensuring that critical health decisions are not left entirely to
automated systems74,78.

Addressing these ethical issues—privacy, equity, transparency, and
human oversight—will allow self-triage systems to contribute positively to
healthcare delivery, without exacerbating existing inequities or under-
mining user trust. The intersection of self-reported patient data, artificial
intelligence, and user experience research in the form of self-triage systems,
represents an important step towards more proactive, automated, opti-
mized, and self-guided healthcare delivery.

But to achieve this future will likely require deeper collaboration
between industry partners including the electronic health record com-
panies, community health systems, payers, and technology companies.
This is because self-triage systems’ accuracy is limited without a “right
answer” to affirm or deny the validity of a recommendation. However,
without access to the data found in the EMR or in claims there is no way
to “close the loop” for validation purposes. This unmet need in the field
results in slower progress to improving the patient’s navigational
experience of healthcare. Collaborations between these partners would
solve for this. While medical centers house the majority of data that
would be required to validate such systems, the majority of innovation in
A.I. self-triage systems has been in the private industry (Table 3).

Health system adoption of self-triage systems
As part of this review, self-triage adoption by health systems in theUSAwas
measured (Table 3 and 4). The websites of 647 health systems were exam-
ined by applying the following inclusion criteria from a complete list of U.S.
hospitals and health systems79: (a) the system owns at least 3 hospitals and
generates at least $250M innet patient revenue, (b) the systemhas a distinct
web experience, and (c) the self-triage experience is available to the public.
Out of this list, 15 different self-triage systems were found to be adopted by
50 health systems (7.72%) with 6 of those (0.93%) being self-triage exclu-
sively for COVID. Of the 15 self-triage systems, the most widely adopted
vendor was available on the websites of 13 health systems (2.01%) with the
next highest being available on 10 health systems (1.55%) each (Table 3). As
US health systems vary in size, the number of hospitals serviced by each
health systemwas also incorporated into the analysis. Table 4 shows that 534
hospitals (8.73% out of a total of 6120 in the USA80) have websites with self-
triage readily available. The most widely adopted vendor was available on
the websites representing 244 hospitals (3.99%). The next highest being
available on the websites representing 91 hospitals (1.49%). A future study
could examine the differences in routing needs required for technology to
optimize patient access with the delivery of healthcare resources at varying
scalesof service area (e.g., 100hospitals vs 300hospitals).Additionally,more
details on each system are provided in Table 2.

Fornow, themajority of patientswho are experiencing anew symptom
must self-triage to an appropriate site of care. As a result, one study shows
that 60% of the time patients inappropriately triage themselves81. At scale, it
is estimated that almost a trillion dollars of healthcare expenditure (i.e., 25%
of total health care spending) is wasted82. Self-triage systems hold great

Table 3 | Health system adoption of virtual triage solutions by
vendor onwebsites accessible to the public (unauthenticated)

Virtual triage solution
adopted by regional US
health system(s)

Count %

No adopted virtual triage
solution

598 92.42%

Clearstep 13 2.01%

Fabric (fka Gyant) 10 1.55%

Self-care decisions 6 0.93%

MSFT (COVID) 6 0.93%

Ada 4 0.62%

BrightMD 4 0.62%

Healthwise 2 0.31%

Orbita 1 0.15%

Isabel 1 0.15%

Azure Healthbot (MSFT) 1 0.15%

Buoy 1 0.15%

Grand Total 647 100.00%

Due to the novelty of virtual triage 92.42% of health systems have not yet adopted any publicly
accessible solution. Of the remaining 7.57% that have adopted a solution (49 systems), 12.24% of
them have only adopted COVID-specific self-triage (6 systems).
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promise in supporting patients to make more clinically accurate decisions.
In fact, the same study showed that 15–30% of patients who used a digital
self-triage system engaged with triage results for re-direction to more
clinically appropriate care81.

As health systems, payers, EHR companies, and self-triage companies
work together more, partnerships between them would benefit patients by
providing a “closed loop” of feedback toA.I. systems.Doing sowould enable
such systems to validate predictions and learn more quickly with increased
use; ultimately providing more intelligent navigational capabilities. As a
result, less patientswould bounce around the health system andmorewould
likely seek the right care at the right place and right time.Additionally, doing
so would also benefit payers as more efficient healthcare utilization would
lead to reduced cost of care per patient. Finally, providers could expect to see
more patients that are appropriate for their them. This is especially relevant
in the context of current provider shortages and burnout.More than ever the
healthcare system needs to ensure it is not wasting unnecessary resources.
Enabling patients to better route themselves is a key component to con-
trolling spend. There is a future in sight where the knowledge required for
clinically accurate decision-making is democratized and made accessible to
patients in a delightful experience that benefits everyday people regardless of
their education level.
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